FedBranched : leveraging federated learning for anomaly-aware load forecasting in energy networks
author
Manzoor, Habib Ullah
Khan, Ahsan Raza
Flynn, David
Akram, Muhammad
statement of authorship
Habib Ullah Manzoor, Ahsan Raza Khan, David Flynn, Muhammad Mahtab Alam, Muhammad Akram, Muhammad Ali Imran and Ahmed Zoha
source
publisher
journal volume number month
vol. 23, 7
year of publication
pages
art. 3570
subject term
ISSN
1424-8220
notes
Bibliogr.: 30 ref
Special Issue: Machine Learning Techniques for Energy Efficient IoT Networks
Bibliogr.: 30 ref
Open Access
Open Access
scientific publication
teaduspublikatsioon
classifier
category (general)
category (sub)
kvartiil
TTÜ department
language
inglise
Uurimisrühm
Manzoor, H. U., Khan, A. R., Flynn, D., Alam, M. M., Akram, M., Imran, M. A., Zoha, A. FedBranched : leveraging federated learning for anomaly-aware load forecasting in energy networks // Sensors (2023) vol. 23, 7, art. 3570. https://doi.org/10.3390/s23073570