Analysis of the impact of poisoned data within Twitter classification models

statement of authorship
Kristopher R. Price, Jaan Priisalu, Sven Nomm
journal volume number month
vol. 52, 19
year of publication
pages
p. 175-180
keyword
social-engineering
data-science
adversarial machine-learning
ISSN
2405-8963
notes
Special issue: 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019: Tallinn, Estonia, 16–91 September 2019
Bibliogr. p. 179
TTÜ department
language
inglise
Price, C., Piirsalu, J., Nõmm, S. Analysis of the impact of poisoned data within Twitter classification models // IFAC-PapersOnLine (2019) vol. 52, 19, p. 175-180. https://doi.org/10.1016/j.ifacol.2019.12.170