Surrogate-model prediction of mechanical response in architected Ti6Al4V cylindrical TPMS metamaterials
author
statement of authorship
Mansoureh Rezapourian, Ali Cheloee Darabi, Mohammadreza Khoshbin, Siegfried Schmauder, Irina Hussainova
source
special issue
Application of Machine Learning in Metallic Materials
publisher
journal volume number month
vol. 15, 12
year of publication
pages
art. 1372
ISSN
2075-4701
Open Access
Open Access
scientific publication
teaduspublikatsioon
language
English
subject term
keyword
ANN-based mechanical property prediction
cylindrical Ti6Al4V-based lattice implants
quasi-static compression
surrogate-based approach
classifier
TalTech department
Rezapourianghahfarokhi, M., Darabi, A. C., Khoshbin, M., Schmauder, S., Hussainova, I. Surrogate-model prediction of mechanical response in architected Ti6Al4V cylindrical TPMS metamaterials // Metals (2025) vol. 15, 12, art. 1372. https://doi.org/10.3390/met15121372