- Day-ahead PV output power forecasting utilizing boosting recursive lightGBM-LSTM frameworkHokmabad, Hossein Nourollahi; Husev, Oleksandr; Vinnikov, Dmitri; Belikov, Juri; Petlenkov, EduardIEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe 2023) : proceedings2023 / 5 p https://doi.org/10.1109/ISGTEUROPE56780.2023.10408090
- Enhancing PV hosting capacity and mitigating congestion in distribution networks with deep learning based PV forecasting and battery managementShabbir, Noman; Kütt, Lauri; Astapov, Victor; Daniel, Kamran; Jawad, Muhammad; Husev, Oleksandr; Rosin, Argo; Martins, JoaoApplied energy2024 / art. 123770 https://doi.org/10.1016/j.apenergy.2024.123770
- PF-FEDG : an open-source data generator for frequency disturbance event detection with deep-learning reference classifiersSun, Zhenglong; Ram, Machlev; Jiang, Chao; Wang, Qianchao; Perl, Michael; Belikov, Juri; Levron, YoashEnergy reports2023 / p. 397-413 https://doi.org/10.1016/j.egyr.2022.11.182 https://www.scopus.com/sourceid/21100389511 https://www.scopus.com/record/display.uri?eid=2-s2.0-85143667195&origin=inward&txGid=b55824871a132362a1d59f495c152042 https://jcr.clarivate.com/jcr-jp/journal-profile?journal=ENERGY%20REP&year=2023 https://www.webofscience.com/wos/woscc/full-record/WOS:000904596100007
- Real-time gait anomaly detection using 1D-CNN and LSTMRostovski, Jakob; Ahmadilivani, Mohammad Hasan; Krivošei, Andrei; Kuusik, Alar; Alam, Muhammad MahtabDigital Health and Wireless Solutions : First Nordic Conference, NCDHWS 2024, Oulu, Finland, May 7–8, 2024 : Proceedings, Part II2024 / p. 260-278 https://doi.org/10.1007/978-3-031-59091-7_17 https://www.scopus.com/sourceid/17700155007 https://www.scopus.com/record/display.uri?eid=2-s2.0-85193513969&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=ALL%28%22Real-Time+Gait+Anomaly+Detection+Using+1D-CNN+and+LSTM%22%29&sessionSearchId=a1950993a8713b95c4defac4e2fbf8c1&relpos=0 https://www.webofscience.com/wos/woscc/full-record/WOS:001265181000017
- Sea level forecasting using deep recurrent neural networks with high-resolution hydrodynamic modelRajabi-Kiasari, Saeed; Ellmann, Artu; Delpeche-Ellmann, Nicole CamilleApplied ocean research2025 / art. 104496 https://doi.org/10.1016/j.apor.2025.104496