Advanced machine learning and experimental studies of polypropylene based polyesters tribological composite systems for sustainable recycling automation and digitalization
author
statement of authorship
Abrar Hussain, Jakob Kübarsepp, Fjodor Sergejev, Dmitri Goljandin, Irina Hussainova, Vitali Podgursky, Kristo Karjust, Himanshu S. Maurya, Ramin Rahmani, Maris Sinka, Diāna Bajāre, Anatolijs Borodiņecs
source
International journal of lightweight materials and manufacture
publisher
AVIC Manufacturing Technology Institute Publishing services
year of publication
ISSN
2588-8404
Open Access
Open Access
scientific publication
teaduspublikatsioon
language
inglise
subject term
keyword
materials computational analysis
polymeric waste
fiber-reinforced composites
classifier
TTÜ department
Hussain, A., Kübarsepp, J., Sergejev, F., Goljandin, D., Hussainova, I., Podgurski, V., Karjust, K., Maurya, H. S., Rahmani Ahranjani, R., Sinka, M., et al. Advanced machine learning and experimental studies of polypropylene based polyesters tribological composite systems for sustainable recycling automation and digitalization // International journal of lightweight materials and manufacture (2024) https://doi.org/10.1016/j.ijlmm.2024.11.001