Tööstuskeemia labor
Nimetus
Põlevkivikeemia uurimisrühm (kuni 2022)
Oil shale chemistry research group (until 2022)
TalTech prioriteetne teadussuund
Klassifikaator (Frascati)
Uurimisrühma juht
Uurimisrühma liige
Võtmesõna
keemiatehnoloogia
läbivooluprotsessid
jääkmaterjalide väärindamine
dikarboksüülhapped ja nende derivaadid
oksüdatsioon
Ülevaade
Tööstuskeemia labori peamiseks ülesandeks on lahendada tööstusettevõtete keemia- ja keemiatehnoloogilisi probleeme. Uurimisrühma kuuluvad nii keemikud kui ka insenerid, kes otsivad teaduspõhiseid lahendusi keemiatehnoloogia probleemidele, millega kohalikud ettevõtted silmitsi seisavad. Suurt rõhku pannakse põlevkivi alternatiivsete kasutusviiside uurimisele, näiteks selle kasutamisele peenkeemiatoodete toorainena, ja erinevate tööstusjääkide ringlussevõtule. Uurimistöö sisaldab nii väikese mastaabiga laborikatseid kui ka kilogrammiskaalas pilootseadme ehitamist ning tööstusliku pilootseadme kavandamist. Selle tulemusena on loodud ainulaadne reaktorsüsteem ning saadavate produktide eraldamise ja analüüsimise võimekus. Loodud seadmestik võimaldab läbi viia ja testida ka teisi keemilisi muundamisprotsesse voolus kõrgetel rõhkudel ja temperatuuridel ning arendada jätkusuutlikke lahendusi erinevatele keerulistele probleemidele. Labori senised põhisuunad on seotud põlevkivi, selles sisalduva orgaanilise materjali ja põlevkivi tuha uurimisega.
Tähtsamad tulemused
2022. aastal viidi läbi Eesti põlevkivi HNO3-ga oksüdeerimine 120 oC juures, uuriti oksüdeerimise kineetikat ja tahke faasi käitumist ekstraheerimisel. Näidati, et 94% algses aines sisalduvast süsinikust saab ekstraheerida 3 tunniga ja 96% pärast 24 tunni kestnud reaktsiooni. Näidati, et suurem osa kaltsiidist eemaldati reaktsiooni esimese tunni jooksul isegi 80 oC juures ning jääk koosnes valdavalt ränipõhistest mineraalidest – kvartidest, päevakivist, illiidist. Protsessi käigus toimunud eripinna muutused ja sellega seotud muutused osakeste suurusjaotuses olid selgelt korrelatsioonis ekstraheerimise kineetikaga, mida saab kasutada vahendina edasiste protsessi arendamise etappide planeerimisel. Tulemused näitavad selgelt, et eesti põlevkivi oksüdatiivsel leotamisel on protsessi optimeerimisega võimalik saada kõrgeid saagiseid, mis võimaldab kasutada seda väärtuslikku toorainet kõrgema lisandväärtusega keemiatootmiseks võrreldes energiatootmisega, mis on selle praegune peamine kasutusala.
Seotud projektid
Seotud struktuuriüksus
- Niidu, A., Grénman, H., Muldma, K., Kaldas, K., Mikli, V., Lopp, M. Behavior of Estonian oil shale in acidic oxidative conditions // Frontiers in Chemical Engineering (2022) vol. 4, art. 590115.
https://doi.org/10.3389/fceng.2022.590115 - Kaldas, K., Niidu, A., Preegel, G., Uustalu, J. M., Muldma, K., Lopp, M. Aspects of kerogen oxidative dissolution in subcritical water using oxygen from air // Oil shale (2021) 3, p. 199-214 : ill.
https://doi.org/10.3176/oil.2021.3.02 - Puthiya Veetil, S.K., Rebane, K., Yörük, C.R., Lopp, M., Trikkel, A., Hitch, M. Aqueous mineral carbonation of oil shale mine waste (limestone) : a feasibility study to develop a CO2 capture sorbent // Energy (2021) vol. 221, art. 119895.
https://doi.org/10.1016/j.energy.2021.119895 - Kananovich, D., Elek, G. Z., Lopp, M., Borovkov, V. Aerobic oxidations in asymmetric synthesis : catalytic strategies and recent developments // Frontiers in chemistry (2021) vol. 9, art. 614944.
https://doi.org/10.3389/fchem.2021.614944 - Kooli, A., Wesenberg, L., Beslać, M., Krech, A., Lopp, M., Noël, T., Ošeka, M. Electrochemical hydroxylation of electron-rich arenes in continuous flow // European journal of organic chemistry (2022) vol. 2022, 20, art. e202200540.
https://doi.org/10.1002/ejoc.202200011 - Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Wet air oxidation of oil shales: kerogen dissolution and dicarboxylic acid formation // ACS omega (2020) vol. 5, 35, p. 22021−22030.
https://doi.org/10.1021/acsomega.0c01466 - Kõllo, M., Kasari, M., Kasari, V., Pehk, T., Järving, I., Lopp, M., Jõers, A., Kanger, T. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols // Beilstein journal of organic chemistry (2021) vol. 17, p. 581–588.
https://doi.org/10.3762/bjoc.17.52 - Lopušanskaja, E., Kooli, A., Paju, A., Järving, I., Lopp, M. Towards ortho-selective electrophilic substitution/addition to phenolates in anhydrous solvents // Tetrahedron (2021) vol. 83, 12, art. 131935, 9 p.
https://doi.org/10.1016/j.tet.2021.131935 - Zubrytski, D. M., Elek, G. Z., Lopp, M., Kananovich, D. G. Generation of mixed anhydrides via oxidative fragmentation of tertiary cyclopropanols with phenyliodine(III) dicarboxylates // Molecules (2020) vol. 26, 1, art. 140.
https://doi.org/10.3390/molecules26010140 - Kooli, A., Shalima, T., Lopušanskaja, E., Paju, A., Lopp, M. Selective C-alkylation of substituted naphthols under non-aqueous conditions // Tetrahedron (2021) vol. 95, art. 132278, 8 p. : ill.
https://doi.org/10.1016/j.tet.2021.132278 - Kananovich, D. G., Lopp, M. Chirogenesis in asymmetric synthesis and catalysis // Chirogenesis in Chemical Science. Singapore : World Scientific, 2023. p. 169-240.
https://doi.org/10.1142/9789811259227_0004 - Kõllo, M., Rõuk, K., Lopp, M. Synthesis of 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclo penten-1-one, a D-ring precursor of 9,11-secosterols // Proceedings of the Estonian Academy of Sciences (2022) vol. 71, 4, p. 307-313 : ill.
https://doi.org/10.3176/proc.2022.4.01 - Lopušanskaja, E., Paju, A., Järving, I., Lopp, M. Synthesis of cyclic 3-aryl-substituted 1,2-dicarbonyl compounds via Suzuki cross-coupling reactions // Synthesis (2018) vol. 50, 9, p. 1883-1890 : ill.
https://doi.org/10.1055/s-0036-1591543 - Maljutenko, K., Borovkov, V., Kananovich, D., Järving, I., Lopp, M. Aerobic cascade oxidation of substituted cyclopentane-1,2-diones using metalloporphyrin catalysts // Tetrahedron (2018) vol. 74, 6, p. 661−664 : ill.
https://doi.org/10.1016/j.tet.2017.12.009 - Aid, T., Koel, M., Lopp, M., Vaher, M. Metal-catalyzed degradation of cellulose in ionic liquid media // Inorganics (2018) vol. 6, 3, art. 78, 11 p. : ill.
https://doi.org/10.3390/inorganics6030078 - Elek, G.Z., Koppel, K., Zubrytski, D., Konrad, N., Järving, I., Lopp, M., Kananovich, D. Divergent access to histone deacetylase inhibitory cyclopeptides via a late-stage cyclopropane ring Cleavage strategy. Short synthesis of Chlamydocin // Organic letters (2019) vol. 21, 20, p. 8473-8478 : ill.
https://doi.org/10.1021/acs.orglett.9b03305 - Nešumajev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology // Oil shale (2019) vol. 36, 2S, p. 99–113 : ill.
https://doi.org/10.3176/oil.2019.2S.02 http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-99-113.pdf - Loo, L., Konist, A., Nešumajev, D., Pihu, T., Maaten, B., Siirde, A. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion // Energies (2018) vol. 11, 5, art. 1218, 12 p. : ill.
https://doi.org/10.3390/en11051218 - Maaten, B., Järvik, O., Pihl, O., Konist, A., Siirde, A. Oil shale pyrolysis products and the fate of sulfur // Oil shale (2020) vol. 37, 1, p. 51–69 : tab.
https://www.kirj.ee/33071/?tpl=1061&c_tpl=1064 https://doi.org/10.3176/oil.2020.1.03 - Maaten, B., Loo, L., Konist, A., Siirde, A. Mineral matter effect on the decomposition of Ca-rich oil shale // Journal of thermal analysis and calorimetry (2018) vol. 131, 3, p. 2087–2091 : ill.
https://doi.org/10.1007/s10973-017-6823-1 - Pikkor, H., Maaten, B., Baird, Z.S., Järvik, O., Konist, A., Lees, H. Surface area of oil shale and its solid pyrolysis products depending on the particle size // Chemical engineering transactions (2020) vol. 81, p. 961−966.
https://doi.org/0.3303/CET2081161 - Maaten, B., Pikkor, H., Konist, A., Siirde, A. Determination of the total sulphur content of oil shale by using different analytical methods // Oil shale (2018) vol. 35, 2, p. 144-153 : ill.
https://doi.org/10.3176/oil.2018.2.04 - Culin, C., Tente, K., Konist, A., Maaten, B., Loo, L. et al. Reactivities of American, Chinese and Estonian oil shale semi-cokes and Argonne premium coal chars under oxy-fuel combustion conditions // Oil shale (2019) vol. 36, 3, p. 353-369 : ill.
http://www.kirj.ee/32526/?tpl=1061&c_tpl=1064 https://doi.org/10.3176/oil.2019.3.01 - Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Comparison of the ecotoxic properties of oil shale industry by-products to those of coal ash // Oil shale (2022) vol. 39, 1, p. 1-19 : tab.
https://doi.org/10.3176/oil.2022.1.01 - Silm, E., Kaabel, S., Järving, I., Kanger, T. Asymmetric organocatalytic Michael addition–cyclisation cascade of cyclopentane-1,2-dione with alkylidene malononitriles // Synthesis (2019) vol. 51, 22, p. 4198-4204.
https://doi.org/10.1055/s-0039-1690484 - Järvik, O., Sulg, M., Cascante Cirici, P., Eldermann, M., Konist, A., Gusca, J., Siirde, A. Co-pyrolysis and co-gasification of biomass and oil shale // Environmental and Climate Technologies (2020) Vol. 24, 1, p. 624–637 : ill.
https://doi.org/10.2478/rtuect-2020-0038 - Pihl, O., Khaskhachikh, V., Kravetskaja, J., Niidu, N., Siirde, A. Co-pyrolysis of Estonian oil shale with polymer wastes // ACS omega (2021) vol. 6, 47, p. 31658–31666 : ill.
https://doi.org/10.1021/acsomega.1c04188 - Maaten, B., Konist, A., Siirde, A. Potential of solid residues from power plants as thermochemical energy storage materials // Journal of thermal analysis and calorimetry (2020) vol. 142, p. 1799−1805.
https://doi.org/10.1007/s10973-020-09948-6 - Pikkor, H., Lees, H., Maaten, B., Järvik, O., Konist, A. Surface characterisation of Estonian oil shale semi-coke // Chemical engineering transactions (2020) vol. 81, p. 853-858 : ill.
https://doi.org/0.3303/CET2081143 - Maaten, B., Järvik, O., Loo, L., Konist, A., Siirde, A. Characterization of the pyrolytic water from shale oil industry // Oil shale (2018) vol. 35, 4, p. 365-374 : ill.
http://kirj.ee/public/oilshale_pdf/2018/issue_4/OS-2018-4-365-374.pdf https://doi.org/10.3176/oil.2018.4.06 https://artiklid.elnet.ee/record=b2868185*est - Sihtmäe, M., Silm, E., Kriis, K., Kahru, A., Kanger, T. Aminocatalysts are more environmentally friendly than hydrogen-bonding catalysts // ChemSusChem (2022) vol. 15, 16, art. e202201045, 5 p. : ill.
https://doi.org/10.1002/cssc.202201045 - Pikkor, H., Lees, H., Konist, A., Järvik, O., Maaten, B. Steam activation of oil shale to enhance the porosity of produced semicoke // Energy Sources, Part A : Recovery, Utilization, and Environmental Effects (2022) vol. 44, 4, p. 9064-9073.
https://doi.org/10.1080/15567036.2022.2128471 - Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Computational results of the ecotoxic analysis of fly and bottom ash from oil shale power plants and shale oil production facilities // Chemical engineering transactions (2020) vol. 81, p. 967-972.
https://doi.org/0.3303/CET2081162 https://www.scopus.com/record/display.uri?eid=2-s2.0-85092033034&origin=inward&txGid=0c1c7fc07fcc8f2767255413a47fc58b - Pikkor, H., Järvik, O., Lees, H., Konist, A., Siirde, A., Maaten, B. Characterization and enhancement of oil shale fly ash from CFB boiler // 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021. : IEEE, 2021. p. 1-4.
https://doi.org/10.23919/SpliTech52315.2021.9566470 - Pihl, O., Niidu, A., Merkulova, N., Fomitšov, M., Siirde, A., Tšepelevitš, M. Gas-chromatographic determination of sulfur compounds in the gasoline fractions of shale oil and oil obtained from used tires // Oil shale (2019) vol. 36, 2S, p. 188–196 : ill.
http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-188-196.pdf https://doi.org/10.3176/oil.2019.2S.09 - Uibu, M., Siirde, A., Järvik, O., Trikkel, A., Yörük, C.R., Hazak, A., Konist, A. et al. ClimMIT - Climate change mitigation with CCS and CCU technologies // Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021. : SSRN, 2021. 9 p.
https://ssrn.com/abstract=3812288 https://doi.org/10.2139/ssrn.3812288 - Pihl, O., Tšepelevitš, M., Burko, M., Siirde, A. Applying the correction for undecomposed carbonates to gross calorific values of oil shales from different deposits // Oil shale (2019) vol. 36, 2S, p. 250–256 : ill.
http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-250-256.pdf https://doi.org/10.3176/oil.2019.2S.13 - Silm, E., Järving, I., Kanger, T. Asymmetric organocatalytic Michael addition of cyclopentane-1,2-dione to alkylidene oxindole // Beilstein Journal of Organic Chemistry (2022) vol. 18, p. 167-173.
https://doi.org/10.3762/bjoc.18.18 - Pikkor, H., Konist, A., Maaten, B., Jörvik, O., Lees, H. Effect of steam activation on oil shale semi-coke surface properties // International Multidisciplinary Conference on Computer and Energy Science (SpliTech). : IEEE, 2021. 5 p.
https://doi.org/10.23919/SpliTech52315.2021.9566397 - Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Reactivity of aliphatic dicarboxylic acids in wet air oxidation conditions // Industrial & engineering chemistry research (2019) vol. 58, 25, p. 10855–10863 : ill.
https://doi.org/10.1021/acs.iecr.9b01643 - Maaten, B., Siirde, A., Vahur, S., Kirsimäe, K. Influence of the end-temperature on the oil shale fast pyrolysis process and its products // Journal of thermal analysis and calorimetry (2023) vol. 148, 4, p. 1647-1655 : ill.
https://doi.org/10.1007/s10973-022-11567-2 - Lees, H., Jõul, P., Pikkor, H., Järvik, O., Mets, B., Konist, A. Characterization of oil shale kerogen semi-coke and its application to remove chemical pollutants from aqueous solutions // Oil shale (2023) vol. 40, 2, p. 115-132 : ill.
https://doi.org/10.3176/oil.2023.2.02 - Mets, B., Kaldas, K., Uustalu, J. M., Lopp, M. The Lille-Blokker model – an excellent tool to describe the structure of kukersite // Oil shale (2023) vol. 40, 3, p. 234−243.
https://doi.org/10.3176/oil.2023.3.04 - Mets, B., Lopp, M., Uustalu, J.M., Muldma, K., Niidu, A., Kaldas, K. A two-step model for assessing the potential of shale-derived chemicals by oxidation of kukersite // Oil shale (2023) vol. 40, 4, p. 344-362.
https://doi.org/10.3176/oil.2023.4.04