Zero-memory-overhead clipping-based fault tolerance for LSTM deep neural networks

statement of authorship
Bahram Parchekani, Samira Nazari, Mohammad Hasan Ahmadilivani, Ali Azarpeyvand, Jaan Raik, Tara Ghasempouri and Masoud Daneshtalab
source
37th IEEE International Symposium on Defect and Fault Tolerancein VLSI and Nanotechnology Systems, Harwell, Oxfordshire, Didcot, UK, October 8th - 10th, 2024
location of publication
Piscataway, New Jersey
publisher
year of publication
pages
4 p. : ill
conference name, date
37th IEEE Iternational Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, 8-10 October, 2024
conference location
Harwell, Oxfordshire, Didcot, UK
ISSN
2576-1501
ISBN
979-835036688-4
notes
Bibliogr.: 18 ref
scientific publication
teaduspublikatsioon
TTÜ department
language
inglise
Parchekani, B., Nazari, S., Ahmadilivani, M.H., Azarpeyvand, A., Raik, J., Ghasempouri, T., Daneshtalab, M. Zero-memory-overhead clipping-based fault tolerance for LSTM deep neural networks // 37th IEEE International Symposium on Defect and Fault Tolerancein VLSI and Nanotechnology Systems, Harwell, Oxfordshire, Didcot, UK, October 8th - 10th, 2024. Piscataway, New Jersey : IEEE, 2024. 4 p. : ill. https://doi.org/10.1109/DFT63277.2024.10753533