Evaluating the robustness of ML models to out-of-distribution data through similarity analysis

autor
Lindén, Joakim
Forsberg, Håkan
Söderquist, Ingemar
vastutusandmed
Joakim Lindén, Håkan Forsberg, Masoud Daneshtalab & Ingemar Söderquist
allikas
New Trends in Database and Information Systems; ADBIS 2023 Short Papers, Doctoral Consortium and Workshops: AIDMA, DOING, K-Gals, MADEISD, PeRS, Barcelona, Spain, September 4–7, 2023, Proceedings
ilmumiskoht
Cham
kirjastus/väljaandja
ilmumisaasta
leheküljed
p. 348 - 359
konverentsi nimetus, aeg
27th European Conference on Advances in Databases and Information Systems, ADBIS 2023, 4-7 September 2023
konverentsi toimumispaik
Barcelona, Spain
ISSN
1865-0929
ISBN
978-303142940-8
märkused
Bibliogr.: 20 ref
teaduspublikatsioon
teaduspublikatsioon
TTÜ struktuuriüksus
keel
inglise
võtmesõna
accuracy estimation
similarity metrics
Lindén, J., Forsberg, H., Daneshtalab, M., Söderquist, I. Evaluating the robustness of ML models to out-of-distribution data through similarity analysis // New Trends in Database and Information Systems; ADBIS 2023 Short Papers, Doctoral Consortium and Workshops: AIDMA, DOING, K-Gals, MADEISD, PeRS, Barcelona, Spain, September 4–7, 2023, Proceedings. Cham : Springer Nature, 2023. p. 348 - 359. (Communications in computer and information science ; 1850). https://doi.org/10.1007/978-3-031-42941-5_30