Põlevkivikeemia uurimisrühm (kuni 2022)
Nimetus
Industrial chemistry laboratory
Oil shale chemistry research group (until 2022)
TalTech priority area
Research classification (Frascati)
Head of the research group
Research group member
Keyword
methods of oxidation of oil shaleand kerogen for the conversion of dicarboxylicacid derivatives
Overview
The research is carried out in the framework of the project “Technological Platform for Processing Oil Shale Kerogen into Dicarboxylic Acids”(Smart Specialization Program, contract LLKEE20030, KEROX II) in order to develop a continuous-flow process and initial conditions were studied for that perquisites to introduce the technology to practice. KEROX II project develops further the initial technological platform from KEROX I (Smart specialization programme,contract LEP17009, KEROX I, 2017–2019).It was shown that the oxidation of kerogen to water-soluble organic compounds can be directly used or upgraded to value-added products and should be considered as an alternative direction for improving the oil shale industry. A direct dependence of kerogen transformation on the oxidant amount at different oil shale concentrations was observed. Oil shale with the highest degree of kerogen induced the decomposition of DCAs the most. It was also shown that the amount of DCAs in the mixture of dissolved organics can be doubled by additional oxidation with nitric acid.The application of a semi-continuous process using a trickle-bed reactor did not improve the yield of dissolved organics and the method was considered unsuitable for kerogen dissolution.The results to achieve a continuous-flow process revealed the sulphuric acid can be used for pre-treatment of the raw material and as an additive to the oxidation process. The results are presented in Estonian Patent Application (Lopp,M.; Kaldas, K.; Preegel, G.; Muldma, K.; Niidu,A. Põlevkivi kerogeeni oksüdeeriva lahustamise meetod. Est. Pat. Appl. (2021), EE 2019000020A 20210215).
Related projects
Related department
- Niidu, A., Grénman, H., Muldma, K., Kaldas, K., Mikli, V., Lopp, M. Behavior of Estonian oil shale in acidic oxidative conditions // Frontiers in Chemical Engineering (2022) vol. 4, art. 590115.
https://doi.org/10.3389/fceng.2022.590115 - Kaldas, K., Niidu, A., Preegel, G., Uustalu, J. M., Muldma, K., Lopp, M. Aspects of kerogen oxidative dissolution in subcritical water using oxygen from air // Oil shale (2021) 3, p. 199-214 : ill.
https://doi.org/10.3176/oil.2021.3.02 - Puthiya Veetil, S.K., Rebane, K., Yörük, C.R., Lopp, M., Trikkel, A., Hitch, M. Aqueous mineral carbonation of oil shale mine waste (limestone) : a feasibility study to develop a CO2 capture sorbent // Energy (2021) vol. 221, art. 119895.
https://doi.org/10.1016/j.energy.2021.119895 - Kananovich, D., Elek, G. Z., Lopp, M., Borovkov, V. Aerobic oxidations in asymmetric synthesis : catalytic strategies and recent developments // Frontiers in chemistry (2021) vol. 9, art. 614944.
https://doi.org/10.3389/fchem.2021.614944 - Kooli, A., Wesenberg, L., Beslać, M., Krech, A., Lopp, M., Noël, T., Ošeka, M. Electrochemical hydroxylation of electron-rich arenes in continuous flow // European journal of organic chemistry (2022) vol. 2022, 20, art. e202200540.
https://doi.org/10.1002/ejoc.202200011 - Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Wet air oxidation of oil shales: kerogen dissolution and dicarboxylic acid formation // ACS omega (2020) vol. 5, 35, p. 22021−22030.
https://doi.org/10.1021/acsomega.0c01466 - Kõllo, M., Kasari, M., Kasari, V., Pehk, T., Järving, I., Lopp, M., Jõers, A., Kanger, T. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols // Beilstein journal of organic chemistry (2021) vol. 17, p. 581–588.
https://doi.org/10.3762/bjoc.17.52 - Lopušanskaja, E., Kooli, A., Paju, A., Järving, I., Lopp, M. Towards ortho-selective electrophilic substitution/addition to phenolates in anhydrous solvents // Tetrahedron (2021) vol. 83, 12, art. 131935, 9 p.
https://doi.org/10.1016/j.tet.2021.131935 - Zubrytski, D. M., Elek, G. Z., Lopp, M., Kananovich, D. G. Generation of mixed anhydrides via oxidative fragmentation of tertiary cyclopropanols with phenyliodine(III) dicarboxylates // Molecules (2020) vol. 26, 1, art. 140.
https://doi.org/10.3390/molecules26010140 - Kooli, A., Shalima, T., Lopušanskaja, E., Paju, A., Lopp, M. Selective C-alkylation of substituted naphthols under non-aqueous conditions // Tetrahedron (2021) vol. 95, art. 132278, 8 p. : ill.
https://doi.org/10.1016/j.tet.2021.132278 - Kananovich, D. G., Lopp, M. Chirogenesis in asymmetric synthesis and catalysis // Chirogenesis in Chemical Science. Singapore : World Scientific, 2023. p. 169-240.
https://doi.org/10.1142/9789811259227_0004 - Kõllo, M., Rõuk, K., Lopp, M. Synthesis of 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclo penten-1-one, a D-ring precursor of 9,11-secosterols // Proceedings of the Estonian Academy of Sciences (2022) vol. 71, 4, p. 307-313 : ill.
https://doi.org/10.3176/proc.2022.4.01 - Lopušanskaja, E., Paju, A., Järving, I., Lopp, M. Synthesis of cyclic 3-aryl-substituted 1,2-dicarbonyl compounds via Suzuki cross-coupling reactions // Synthesis (2018) vol. 50, 9, p. 1883-1890 : ill.
https://doi.org/10.1055/s-0036-1591543 - Maljutenko, K., Borovkov, V., Kananovich, D., Järving, I., Lopp, M. Aerobic cascade oxidation of substituted cyclopentane-1,2-diones using metalloporphyrin catalysts // Tetrahedron (2018) vol. 74, 6, p. 661−664 : ill.
https://doi.org/10.1016/j.tet.2017.12.009 - Aid, T., Koel, M., Lopp, M., Vaher, M. Metal-catalyzed degradation of cellulose in ionic liquid media // Inorganics (2018) vol. 6, 3, art. 78, 11 p. : ill.
https://doi.org/10.3390/inorganics6030078 - Elek, G.Z., Koppel, K., Zubrytski, D., Konrad, N., Järving, I., Lopp, M., Kananovich, D. Divergent access to histone deacetylase inhibitory cyclopeptides via a late-stage cyclopropane ring Cleavage strategy. Short synthesis of Chlamydocin // Organic letters (2019) vol. 21, 20, p. 8473-8478 : ill.
https://doi.org/10.1021/acs.orglett.9b03305 - Nešumajev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology // Oil shale (2019) vol. 36, 2S, p. 99–113 : ill.
https://doi.org/10.3176/oil.2019.2S.02 http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-99-113.pdf - Loo, L., Konist, A., Nešumajev, D., Pihu, T., Maaten, B., Siirde, A. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion // Energies (2018) vol. 11, 5, art. 1218, 12 p. : ill.
https://doi.org/10.3390/en11051218 - Maaten, B., Järvik, O., Pihl, O., Konist, A., Siirde, A. Oil shale pyrolysis products and the fate of sulfur // Oil shale (2020) vol. 37, 1, p. 51–69 : tab.
https://www.kirj.ee/33071/?tpl=1061&c_tpl=1064 https://doi.org/10.3176/oil.2020.1.03 - Maaten, B., Loo, L., Konist, A., Siirde, A. Mineral matter effect on the decomposition of Ca-rich oil shale // Journal of thermal analysis and calorimetry (2018) vol. 131, 3, p. 2087–2091 : ill.
https://doi.org/10.1007/s10973-017-6823-1 - Pikkor, H., Maaten, B., Baird, Z.S., Järvik, O., Konist, A., Lees, H. Surface area of oil shale and its solid pyrolysis products depending on the particle size // Chemical engineering transactions (2020) vol. 81, p. 961−966.
https://doi.org/0.3303/CET2081161 - Maaten, B., Pikkor, H., Konist, A., Siirde, A. Determination of the total sulphur content of oil shale by using different analytical methods // Oil shale (2018) vol. 35, 2, p. 144-153 : ill.
https://doi.org/10.3176/oil.2018.2.04 - Culin, C., Tente, K., Konist, A., Maaten, B., Loo, L. et al. Reactivities of American, Chinese and Estonian oil shale semi-cokes and Argonne premium coal chars under oxy-fuel combustion conditions // Oil shale (2019) vol. 36, 3, p. 353-369 : ill.
http://www.kirj.ee/32526/?tpl=1061&c_tpl=1064 https://doi.org/10.3176/oil.2019.3.01 - Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Comparison of the ecotoxic properties of oil shale industry by-products to those of coal ash // Oil shale (2022) vol. 39, 1, p. 1-19 : tab.
https://doi.org/10.3176/oil.2022.1.01 - Silm, E., Kaabel, S., Järving, I., Kanger, T. Asymmetric organocatalytic Michael addition–cyclisation cascade of cyclopentane-1,2-dione with alkylidene malononitriles // Synthesis (2019) vol. 51, 22, p. 4198-4204.
https://doi.org/10.1055/s-0039-1690484 - Järvik, O., Sulg, M., Cascante Cirici, P., Eldermann, M., Konist, A., Gusca, J., Siirde, A. Co-pyrolysis and co-gasification of biomass and oil shale // Environmental and Climate Technologies (2020) Vol. 24, 1, p. 624–637 : ill.
https://doi.org/10.2478/rtuect-2020-0038 - Pihl, O., Khaskhachikh, V., Kravetskaja, J., Niidu, N., Siirde, A. Co-pyrolysis of Estonian oil shale with polymer wastes // ACS omega (2021) vol. 6, 47, p. 31658–31666 : ill.
https://doi.org/10.1021/acsomega.1c04188 - Maaten, B., Konist, A., Siirde, A. Potential of solid residues from power plants as thermochemical energy storage materials // Journal of thermal analysis and calorimetry (2020) vol. 142, p. 1799−1805.
https://doi.org/10.1007/s10973-020-09948-6 - Pikkor, H., Lees, H., Maaten, B., Järvik, O., Konist, A. Surface characterisation of Estonian oil shale semi-coke // Chemical engineering transactions (2020) vol. 81, p. 853-858 : ill.
https://doi.org/0.3303/CET2081143 - Maaten, B., Järvik, O., Loo, L., Konist, A., Siirde, A. Characterization of the pyrolytic water from shale oil industry // Oil shale (2018) vol. 35, 4, p. 365-374 : ill.
http://kirj.ee/public/oilshale_pdf/2018/issue_4/OS-2018-4-365-374.pdf https://doi.org/10.3176/oil.2018.4.06 https://artiklid.elnet.ee/record=b2868185*est - Sihtmäe, M., Silm, E., Kriis, K., Kahru, A., Kanger, T. Aminocatalysts are more environmentally friendly than hydrogen-bonding catalysts // ChemSusChem (2022) vol. 15, 16, art. e202201045, 5 p. : ill.
https://doi.org/10.1002/cssc.202201045 - Pikkor, H., Lees, H., Konist, A., Järvik, O., Maaten, B. Steam activation of oil shale to enhance the porosity of produced semicoke // Energy Sources, Part A : Recovery, Utilization, and Environmental Effects (2022) vol. 44, 4, p. 9064-9073.
https://doi.org/10.1080/15567036.2022.2128471 - Lees, H., Järvik, O., Konist, A., Siirde, A., Maaten, B. Computational results of the ecotoxic analysis of fly and bottom ash from oil shale power plants and shale oil production facilities // Chemical engineering transactions (2020) vol. 81, p. 967-972.
https://doi.org/0.3303/CET2081162 https://www.scopus.com/record/display.uri?eid=2-s2.0-85092033034&origin=inward&txGid=0c1c7fc07fcc8f2767255413a47fc58b - Pikkor, H., Järvik, O., Lees, H., Konist, A., Siirde, A., Maaten, B. Characterization and enhancement of oil shale fly ash from CFB boiler // 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021. : IEEE, 2021. p. 1-4.
https://doi.org/10.23919/SpliTech52315.2021.9566470 - Pihl, O., Niidu, A., Merkulova, N., Fomitšov, M., Siirde, A., Tšepelevitš, M. Gas-chromatographic determination of sulfur compounds in the gasoline fractions of shale oil and oil obtained from used tires // Oil shale (2019) vol. 36, 2S, p. 188–196 : ill.
http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-188-196.pdf https://doi.org/10.3176/oil.2019.2S.09 - Uibu, M., Siirde, A., Järvik, O., Trikkel, A., Yörük, C.R., Hazak, A., Konist, A. et al. ClimMIT - Climate change mitigation with CCS and CCU technologies // Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021. : SSRN, 2021. 9 p.
https://ssrn.com/abstract=3812288 https://doi.org/10.2139/ssrn.3812288 - Pihl, O., Tšepelevitš, M., Burko, M., Siirde, A. Applying the correction for undecomposed carbonates to gross calorific values of oil shales from different deposits // Oil shale (2019) vol. 36, 2S, p. 250–256 : ill.
http://www.kirj.ee/public/oilshale_pdf/2019/issue_2S/OS-2019-2S-250-256.pdf https://doi.org/10.3176/oil.2019.2S.13 - Silm, E., Järving, I., Kanger, T. Asymmetric organocatalytic Michael addition of cyclopentane-1,2-dione to alkylidene oxindole // Beilstein Journal of Organic Chemistry (2022) vol. 18, p. 167-173.
https://doi.org/10.3762/bjoc.18.18 - Pikkor, H., Konist, A., Maaten, B., Jörvik, O., Lees, H. Effect of steam activation on oil shale semi-coke surface properties // International Multidisciplinary Conference on Computer and Energy Science (SpliTech). : IEEE, 2021. 5 p.
https://doi.org/10.23919/SpliTech52315.2021.9566397 - Kaldas, K., Preegel, G., Muldma, K., Lopp, M. Reactivity of aliphatic dicarboxylic acids in wet air oxidation conditions // Industrial & engineering chemistry research (2019) vol. 58, 25, p. 10855–10863 : ill.
https://doi.org/10.1021/acs.iecr.9b01643 - Maaten, B., Siirde, A., Vahur, S., Kirsimäe, K. Influence of the end-temperature on the oil shale fast pyrolysis process and its products // Journal of thermal analysis and calorimetry (2023) vol. 148, 4, p. 1647-1655 : ill.
https://doi.org/10.1007/s10973-022-11567-2 - Lees, H., Jõul, P., Pikkor, H., Järvik, O., Mets, B., Konist, A. Characterization of oil shale kerogen semi-coke and its application to remove chemical pollutants from aqueous solutions // Oil shale (2023) vol. 40, 2, p. 115-132 : ill.
https://doi.org/10.3176/oil.2023.2.02 - Mets, B., Kaldas, K., Uustalu, J. M., Lopp, M. The Lille-Blokker model – an excellent tool to describe the structure of kukersite // Oil shale (2023) vol. 40, 3, p. 234−243.
https://doi.org/10.3176/oil.2023.3.04 - Mets, B., Lopp, M., Uustalu, J.M., Muldma, K., Niidu, A., Kaldas, K. A two-step model for assessing the potential of shale-derived chemicals by oxidation of kukersite // Oil shale (2023) vol. 40, 4, p. 344-362.
https://doi.org/10.3176/oil.2023.4.04