Activity classification for real-time wearable systems : effect of window length, sampling frequency and number of features on classifier performance

vastutusandmed
Ardo Allik, Kristjan Pilt, Deniss Karai, Ivo Fridolin, Mairo Leier, Gert Jervan
ilmumiskoht
[S.l.]
kirjastus/väljaandja
ilmumisaasta
leheküljed
p. 460-464 : ill
konverentsi nimetus, aeg
2016 IEEE EMBS Conference on Biomedical Engineering and Sciences, 4-8 December, 2016
konverentsi toimumispaik
Kuala Lumpur, Malaysia
ISBN
978-1-4673-7791-1
märkused
Bibliogr.: 15 ref
keel
inglise
võtmesõna
sampling frequency
window length
classification features
Allik, A., Pilt, K., Karai, D., Fridolin, I., Leier, M., Jervan, G. Activity classification for real-time wearable systems : effect of window length, sampling frequency and number of features on classifier performance // 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) : Kuala Lumpur, 4-8 December 2016. [S.l.] : IEEE, 2016. p. 460-464 : ill. https://doi.org/10.1109/IECBES.2016.7843493