Toggle navigation
Publications
Profiles
Research Groups
Indexes
Help and information
Eesti keeles
Intranet
Publications
Profiles
Research Groups
Indexes
Help and information
Eesti keeles
Intranet
Databases
Publications
Searching
My bookmarks
0
deep neural networks (keyword)
All fields
Source search
Author search
Subject term search
Title search
starts with
containes
exact match
All fields
Source search
Author search
Subject term search
Title search
starts with
containes
exact match
—
All fields
Source search
Author search
Subject term search
Title search
starts with
containes
exact match
—
All fields
Source search
Author search
Subject term search
Title search
starts with
containes
exact match
—
All fields
Source search
Author search
Subject term search
Title search
starts with
containes
exact match
—
Add criteria
Advanced search
filter
Clear
×
types of item
book
..
journal article
..
newspaper article
..
book article
..
dissertation
..
Open Access
..
Scientific publication
..
year
year of publication
Loading..
author
Loading..
TTÜ department
Loading..
subject term
Loading..
series
Loading..
name of the person
Loading..
keyword
Loading..
Clear
Number of records
11
Look more..
(1/175)
Export
export all inquiry results
(11)
Save TXT fail
Save PDF fail
print
Open for editing with marked entries
my bookmarks
display
Bibliographic view
Short view
sort
author ascending
author descending
year of publication ascending
year of publication descending
title ascending
title descending
1
book article EST
/
book article ENG
AdAM: adaptive fault-tolerant approximate multiplier for edge DNN accelerators
Taheri, Mahdi
;
Cherezova, Natalia
;
Nazari, Samira
;
Rafiq, Ahsan
;
Azarpeyvand, Ali
;
Ghasempouri, Tara
;
Daneshtalab, Masoud
;
Raik, Jaan
;
Jenihhin, Maksim
2024 IEEE European Test Symposium (ETS): ETS 2024 : May 20-24, 2024, The Hague, Netherlands : proceedings
2024
https://doi.org/10.1109/ETS61313.2024.10567161
Conference Proceedings at Scopus
Article at Scopus
Article at WOS
book article EST
/
book article ENG
2
book article
Challenges in using neural networks in safety-critical applications
Forsberg, H.
;
Linden, Jan
;
Hjorth, J.
;
Manefjord, T.
;
Daneshtalab, Masoud
AIAA/IEEE Digital Avionics Systems Conference - Proceedings,
2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), Virtual Conference, October 11-16, 2020 : Proceedings
2020
/
7 p
https://doi.org/10.1109/DASC50938.2020.9256519
book article
3
book article
Composing graph theory and deep neural networks to evaluate SEU type soft error effects
Balakrishnan, Aneesh
;
Lange, Thomas
;
Glorieux, Maximilien
;
Alexandrescu, Dan
;
Jenihhin, Maksim
9th Mediterranean Conference on Embedded Computing (MECO'2020), Budva, Montenegro, 8-11 June 2020
2020
https://doi.org/10.1109/MECO49872.2020.9134279
book article
Seotud publikatsioonid
1
A synthetic, hierarchical approach for modelling and managing complex systems' quality and reliability = Sünteetiline, hierarhiline lähenemine keerukate süsteemide kvaliteedi ja töökindluse modelleerimiseks ja haldamiseks
4
book article EST
/
book article ENG
Data augmentation and teacher-student training for LF-MMI based robust speech recognition
Ullah, Asad
;
Alumäe, Tanel
Text, Speech, and Dialogue : 21st International Conference, TSD 2018, Brno, Czech Republic, September 11-14, 2018 : proceedings
2018
/
p. 403-410
https://doi.org/10.1007/978-3-030-00794-2_43
Conference Proceedings at Scopus
Article at Scopus
Article at WOS
book article EST
/
book article ENG
5
journal article
DeepAxe : a framework for exploration of approximation and reliability trade-offs in DNN accelerators
Taheri, Mahdi
;
Riazati, Mohamad
;
Ahmadilivani, Mohammad Hasan
;
Jenihhin, Maksim
;
Daneshtalab, Masoud
;
Raik, Jaan
;
Sjödin, Mikael
;
Lisper, Björn
arXiv.org
2023
/
8 p. : ill
https://doi.org/10.48550/arXiv.2303.08226
journal article
6
book article
DeepHLS: A complete toolchain for automatic synthesis of deep neural networks to FPGA
Riazati, Mohammad
;
Daneshtalab, Masoud
;
Sjodin, Mikael
;
Lisper, Bjorn
ICECS 2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, November 23-25, 2020, Virtual Conference : Proceedings
2020
/
4 p
https://doi.org/10.1109/ICECS49266.2020.9294881
book article
7
book article EST
/
book article ENG
FARMUR: fair adversarial retraining to mitigate unfairness in robustness
Mousavi, Seyed Ali
;
Mousavi, Hamid
;
Daneshtalab, Masoud
Advances in Databases and Information Systems: 27th European Conference, ADBIS 2023, Barcelona, Spain, September 4–7, 2023 : proceedings
2023
/
p. 133-145
https://doi.org/10.1007/978-3-031-42914-9_10
Conference proceedings at Scopus
Article at Scopus
book article EST
/
book article ENG
8
book article
Gate-level graph representation learning : a step towards the improved stuck-at faults analysis
Balakrishnan, Aneesh
;
Alexandrescu, Dan
;
Jenihhin, Maksim
;
Lange, Thomas
;
Glorieux, Maximilien
Proceedings of the Twenty Second International Symposium on Quality Electronic Design (ISQED) : Santa Clara, USA, 7-9 April 2021
2021
/
p. 24-30
https://doi.org/10.1109/ISQED51717.2021.9424256
book article
Seotud publikatsioonid
1
A synthetic, hierarchical approach for modelling and managing complex systems' quality and reliability = Sünteetiline, hierarhiline lähenemine keerukate süsteemide kvaliteedi ja töökindluse modelleerimiseks ja haldamiseks
9
book article EST
/
book article ENG
Special session : approximation and fault resiliency of DNN accelerators
Ahmadilivani, Mohammad Hasan
;
Barbareschi, Mario
;
Barone, Salvatore
;
Bosio, Alberto
;
Daneshtalab, Masoud
;
Torca, Salvatore Della
;
Gavarini, Gabriele
;
Jenihhin, Maksim
;
Raik, Jaan
;
Taheri, Mahdi
Proceedings 2023 IEEE 41st VLSI Test Symposium (VTS)
2023
/
10 p. : ill
https://doi.org/10.1109/VTS56346.2023.10140043
Conference proceeding at Scopus
Article at Scopus
Article at WOS
book article EST
/
book article ENG
10
journal article EST
/
journal article ENG
A systematic literature review on hardware reliability assessment methods for deep neural networks
Ahmadilivani, Mohammad Hasan
;
Taheri, Mahdi
;
Raik, Jaan
;
Daneshtalab, Masoud
;
Jenihhin, Maksim
ACM Computing Surveys
2024
/
art. 141
https://doi.org/10.1145/3638242
Journal metrics at Scopus
Article at Scopus
Journal metrics at WOS
Article at WOS
journal article EST
/
journal article ENG
11
book article EST
/
book article ENG
ZED-TTE: Zone embedding and deep neural network based travel time estimation approach
Ounoughi, Chahinez
;
Yeferny, Taoufik
;
Ben Yahia, Sadok
2021 International Joint Conference on Neural Networks (IJCNN) : proceedings
2021
/
10 p
https://doi.org/10.1109/IJCNN52387.2021.9533456
Conference Proceedings at Scopus
Article at Scopus
Article at WOS
book article EST
/
book article ENG
Number of records 11, displaying
1 - 11
keyword
175
1.
deep neural networks
2.
deep neural networks (DNNs)
3.
deep convolutional neural network
4.
deep neural network
5.
deep neural network compression
6.
artificial neural networks
7.
artificial neural networks (ANN)
8.
Constrained neural networks
9.
convolutional neural networks
10.
convolutional neural networks (CNNa)
11.
Convolutional Neural Networks (CNNs)
12.
Fuzzy neural networks
13.
multilayer neural networks
14.
neural networks
15.
pre-trained neural networks
16.
recurrent neural networks
17.
recurrent neural networks (RNN)
18.
deep donor-deep acceptor pairs
19.
deep brain stimulation
20.
Deep defects
21.
deep energy levels
22.
deep energy renovation
23.
deep eutectic solvents
24.
deep fake
25.
deep fake recognition
26.
deep habits
27.
deep heat well
28.
deep inference
29.
deep layer
30.
deep learning
31.
deep learning (DL)
32.
deep learning classifier
33.
deep learning model
34.
deep learning model quantization
35.
deep learning network
36.
deep level
37.
deep level traps
38.
deep levels
39.
deep offshore
40.
deep packet inspection
41.
deep reinforcement learning
42.
Deep reinforcing learning SDN
43.
deep renovation
44.
deep understanding
45.
Deep-learning
46.
deep-learning (DL)
47.
embedded deep learning
48.
natural deep eutectic solvents
49.
nZEB deep energy renovation
50.
nZEB deep renovation
51.
artificial neural network
52.
Binarized Neural Network (BNN)
53.
cascaded forward neural network (CFNN)
54.
Convolutional Neural Network
55.
convolutional neural network (CNN)
56.
feedforward neural network (FFNN)
57.
Graph Convolutional Neural Network (GCN)
58.
GraphSAGE (Graph Based Neural Network)
59.
human neural progenitor cells
60.
linear Delta robots neural network based model
61.
neural activity
62.
neural architecture search
63.
neural controller
64.
neural development
65.
neural fuzzy modelling control
66.
neural network
67.
neural network architecture search
68.
neural network controller
69.
neural network predictive controller
70.
neural oscillations
71.
neural processing unit
72.
neural stimulation
73.
Radial Basis Function Neural Network (RBFNN)
74.
recurrent neural network language model
75.
spiking neural network (SNN)
76.
Ternary Neural Network
77.
adaptive networks
78.
ad-hoc sensor networks security
79.
automotive communication networks
80.
Bayesian Belief Networks
81.
Bayesian networks
82.
binary search networks
83.
binary sensor networks
84.
body area networks
85.
body sensor networks
86.
cellular networks
87.
communication networks
88.
complex networks
89.
computer networks
90.
content distribution networks
91.
content-addressable storage networks
92.
convolutional networks
93.
cross-border communication networks
94.
decentralized content-addressable storage (DCAS) networks
95.
developmental networks
96.
diffusion networks
97.
digital twin networks (DTNs)
98.
distribution networks
99.
district heating networks
100.
Dynamic networks
101.
dynamics over networks
102.
ecological networks
103.
economic networks
104.
electric power transmission networks
105.
electrical distribution networks
106.
electrical networks
107.
embedded networks/NoC
108.
gateways (computer networks)
109.
generative adversarial networks
110.
geodetic networks
111.
global production networks
112.
heating networks
113.
hypar-formed networks
114.
IaaS cloud networks
115.
Impedance-source networks
116.
innovation networks
117.
IP networks
118.
iterative networks
119.
knowledge networks
120.
location-based social networks
121.
logistics networks
122.
low voltage networks
123.
low-voltage networks
124.
lumped parameter networks
125.
marketing networks
126.
metabolic networks and pathways
127.
mobile actuator-sensor networks (MAS-Net)
128.
multilayer networks
129.
NB-IoT networks
130.
networks
131.
networks coding
132.
neuro-fuzzy networks and guided missile
133.
non-terrestrial networks
134.
observational networks
135.
on-body networks (BANs)
136.
Online social networks
137.
Optical fiber networks
138.
optical fibre networks
139.
optical networks
140.
optimized routing approach for critical and emergency networks
141.
optimized routing approach for critical and emergency networks simulations
142.
packet switched networks
143.
partner networks
144.
Passive networks
145.
phantom cellular networks
146.
private networks
147.
production networks
148.
Public safety networks
149.
public safety networks (PSN)
150.
public safety networks (PSNs)
151.
reconfigurable scan networks
152.
regional innovation networks
153.
scale-free networks
154.
sensor networks
155.
small district heating networks
156.
SME networks
157.
social networks
158.
social networks
159.
software defined networks (SDN)
160.
sorting networks
161.
supply networks
162.
transmission networks
163.
unreliable wireless networks
164.
WBANs (wireless body area networks)
165.
wearable wireless networks
166.
wearable wireless networks (WWNs)
167.
weighted networks
168.
wireless ad hoc sensor networks
169.
Wireless Body Area Networks
170.
wireless body area networks (WBANs)
171.
wireless body-to-body networks (BBN)
172.
wireless sensor networks
173.
virtual networks
174.
5G networks
175.
5G networks
×
match
starts with
ends with
containes
sort
Relevance
ascending
descending
year of publication
author
TTÜ department
subject term
series
name of the person
keyword
Otsing
Valikud
0
year of publication
AND
OR
NOT
author
AND
OR
NOT
TTÜ department
AND
OR
NOT
subject term
AND
OR
NOT
series
AND
OR
NOT
name of the person
AND
OR
NOT
keyword
AND
OR
NOT